开云贴吧
打造新一代空天飞行器研发重器

发布于:2024-01-16 20:01:43  来源:开云贴吧  点击量:14次

  今年12月,我国航天事业奠基人钱学森诞辰112周年之际,站在新落成的长达167米、能复现每秒10公里超高速飞行速度的超级风洞前,中国科学院力学研究所研究员姜宗林向《中国科学报》表示:“钱学森在论述科学精神时曾说,是不是真正的创新,就看是不是敢于研究别人没有研究过的科学前沿问题。我们用这个独立自主研发的大国重器支持我国的宇航事业奔赴星辰大海,正是对钱先生的最好告慰。”

  自2018年起,在国家自然科学基金国家重大科研仪器研制项目(部门推荐)“爆轰驱动超高速高焓激波风洞”(以下简称JF-22超高速风洞)的支持下,姜宗林带领激波风洞团队依据我国独创的“激波反射型正向爆轰驱动”方法,把国际上一致认为“不能用”的正向爆轰变为“可用”和“好用”的驱动能源,成功研制出JF-22超高速风洞。

  今年5月,该项目完成结题验收。验收专家组一致认为,该风洞在有效实验时间、总温、总压和喷管流场尺寸等综合性能指标方面处于国际领先水平。

  人类有一个航空航天梦,总是想飞得更快、更高、更远。早在20世纪50年代,钱学森首先定义了“高超声速飞行”的概念。未来,新一代飞行器能够达到时行万里、实现国际出行的早出晚归。

  而新一代空天飞行器的研发离不开重要的科学装置——高超声速风洞。高超声速风洞通过人工方式产生并控制高速气流,模拟飞行器周围气体的流动情况,获得飞行器的气体动力学特性,相当于在地面上人为建造一个“飞行天空”。

  飞行器的速度越快,要求风洞产生的“风”越大。科学家用飞行速度与声速之比——“马赫数”度量飞行速度。在高超声速飞行中,飞行器巨大的动能将产生强烈的头部激波和摩擦阻力,把飞行器周围的空气加热到数千摄氏度甚至上万摄氏度,引起空气分子发生解离、原子电离等复杂的化学反应。

  “飞行器周边的空气起热化学反应,这类现象超出了传统气体动力学的研究范畴,需要创立新的理论去描述,打造新的风洞去试验。”姜宗林表示,“新型空天飞行器研发的地面试验需要性能更强大的高超声速风洞。”

  基于这一科学前沿问题和国家航空航天重大需求,2017年底,激波风洞团队向国家自然科学基金委员会提出了国家重大科研仪器研制项目申请,并获得资助。作为科学基金资助体系的重要组成部分,国家重大科研仪器研制项目重点资助对促进科学发展、探索自然规律和开拓研究领域具备极其重大作用的原创性科研仪器的研制。

  2018年全国力学大会上,中国科学院院士杨卫透露:“正在建设中的JF-22超高速风洞将为更高速的飞行奠定实验基础。”

  在国家重大科研仪器研制项目的支持下,激波风洞团队以满足工程需求为目的,挑战先进风洞技术指标的极限,全心投入前所未有的JF-22超高速风洞研制中,于2021年底完成安装,进入性能调试阶段。

  2022年4月15日,JF-22超高速风洞完成首次运行实验。当天是姜宗林的生日,JF-22超高速风洞的成功运行为他送上了一份珍贵礼物。随着轰的一声爆轰,控制室中电脑屏幕上的多个方面数据显示,实验结果达到预期目标。

  2023年上半年,JF-22超高速风洞迎来真正意义上的“大考”。该国家重大科研仪器研制项目验收期间,共进行了5次专家现场测试。首次测试中,实际流场速度高达每秒10.08公里,总温达1.9万开尔文(K),总压达3.3万多个大气压。优异的性能参数令在场专家惊叹不已。

  “我们感到很振奋。我把这次测试的实验记录写到了专家与团队上。”姜宗林回忆说。

  JF-22超高速风洞具有尺度大、时间长、总温和总压高等特点,能够复现40公里至90公里高空、每秒2.5公里至10公里的飞行速度。实测最高速度达每秒10.1公里,如果以实验室声速度量,相当于约30倍声速的飞行条件。

  “JF-22超高速风洞的综合性能在世界上还无另外的风洞可以相比。”姜宗林自信地说。

  早在60年前,科学家就开始探索“正向爆轰驱动”方法,为建造高性能激波风洞做准备。

  “爆轰”是激波风洞用来驱动强大气流的一种方法,即混合的氢气和氧气被点燃,燃烧激波在管道内以高于声速的速度传播。根据点火位置的不同,驱动形式分为“正向”和“反向”两种。和“反向”驱动相比,正向爆轰可以驱动产生更大的空气动量,产生高超声速飞行条件下的气流。

  但是,正向爆轰驱动方式受“稀疏波”的干扰,难以满足激波风洞的驱动要求。怎么样应对“稀疏波”的干扰,“用好”正向爆轰驱动方式,是打造超高速风洞面临的世界级难题,需要在理论和技术层面实现突破。

  2002年,姜宗林团队从原理上革新,提出并设计了激波反射型正向爆轰驱动器。这有效改进了驱动气流的平稳性,使正向爆轰从“不能用”变成了“能用、好用”的动力源,成为JF-22超高速风洞的核心技术。

  从2002年学术论文发表,到2023年JF-22超高速风洞验收,中国科学家“二十年磨一剑”,实现了超高速风洞试验状态从流动“模拟”到关键参数“复现”的跨越。

  在北京怀柔钱学森实验基地空天实验中心,《中国科学报》看到,与JF-22超高速风洞并排的是JF-12复现风洞,即“复现高超声速飞行条件激波风洞”。

  JF-22超高速风洞的研制离不开JF-12复现风洞积累的经验。2008年,在首批国家重大科研仪器研制项目的支持下,JF-12复现风洞立项,2012年完成项目验收,确立了我国在这个研究领域的世界领先地位。

  如今,JF-12复现风洞经历10年的试验应用,在国家重大任务、多个型号研制和学科前沿问题探索中,完成了一系列的重要科学试验。激波风洞研究团队因此获得了2016年度中国科学院杰出科技成就奖。

  如今,这两座风洞可分别实现每秒1.5公里至3公里和每秒3公里至10公里的实验条件,共同构成覆盖马赫数5~30、飞行高度25~90公里的气动实验平台,使我国成为高超声速领域唯一具备覆盖全部“飞行走廊”实验能力的国家。

  追溯更早的历史,JF-22超高速风洞成功的背后,是中国科学院四代科学家连续60多年持续奋斗,书写的一段传承创新、艰苦奋斗的传奇故事。

  20世纪50年代中期,钱学森与“两弹一星”元勋郭永怀就制定了高超声速风洞的研究方向,在中国科学院力学研究所组建了激波风洞科研团队。

  刚刚考上钱学森和郭永怀研究生的俞鸿儒接过发展激波管技术、研制激波风洞的重任。面对基础技术不足、科研经费短缺的难题,俞鸿儒选择了当时国际上已经弃用的驱动方式——氢氧燃烧驱动,但这样的形式产生的能量极大、极易发生爆炸,会带来严重的安全问题。作为我国高超声速研究的第二代科学家,俞鸿儒把一生都投入到这项事业中。

  经过一次又一次的反复试错,我国的风洞研究终于“炸”出了一条新路——我国第一代激波管,第一座大型高超声速风洞JF-8激波风洞,高超声速风洞JF4B、JF8、JF10等先后问世。

  1999年,在俞鸿儒的邀请下,从事激波动力学研究的姜宗林回国,成为第三代“风洞人”。“当时,俞先生告诉我,钱先生和郭先生创立的团队需要青年人传承。这个团队要紧盯国家需求和世界难题。”姜宗林说。

  “因为国家需要,所以热爱这份事业。”姜宗林同样对小组成员说,“只有把事业和国家需求联系在一起,事业才有尺度;只有把事业与世界难题联系在一起,事业才有高度。”他带领激波风洞团队秉承“求实求是”的科研理念,传承了“成功不必在我,功成必定有我”的家国情怀。

  他们完成了JF-12复现风洞和JF-22超高速风洞的研制,撰写了国际首部系统论述超高速激波风洞理论和技术的英文专著,奠定了中国高超声速风洞的世界地位。

  2016年,为表彰姜宗林在世界最大高超声速激波风洞研究中所作的贡献,美国航空航天学会将象征该领域最高荣誉的“地面试验奖”颁给了他。这是这个奖项成立40多年来首次颁发给中国科学家,乃至亚洲科学家。

  如今,姜宗林的学生作为第四代“风洞人”,正在接过前辈科学家手中的接力棒,为我国在高超声速风洞领域的研究注入新动力。(甘晓)

  【新年贺词里的“重”头戏】8年攻关、5年设计建造,国产大型邮轮“牛”在哪?

  据近期《细胞干细胞》杂志报道,荷兰胡布雷希特研究所研究小组制造了第一个人类结膜的类器官模型。从长远来看,新模型甚至有可能为眼部烧伤、眼癌甚至遗传病患者制造替代结膜。

  酵母是一种有机体,在黑暗中发酵,暴露在阳光下可能会阻碍甚至破坏这一过程。由于液泡功能与细胞衰老有关,团队还发起了合作项目,以研究视紫红质蛋白如何能减少酵母中的衰老效应。

  记者15日从安徽省量子计算工程研究中心获悉,截至1月15日上午10时,我国第三代自主超导量子计算机“本源悟空”已为全球用户成功完成33871个运算任务。

  近日,中国科学技术大学中国科学院微观磁共振重点实验室杜江峰院士、王亚教授等人在量子精密测量领域取得重要进展,提出基于信号关联的新量子传感范式,实现对金刚石内点缺陷的高精度成像,并实时观测了点缺陷的电荷动力学。研究团队基于自主发展的氮—空位色心制备技术,可控制备出相距约200纳米的3个氮—空位色心作为量子传感系统,通过对随机电场探测展示了这种新的量子传感范式。

  一个国际研究团队近日在美国《当代生物学》杂志上发表论文说,他们确认的一块皮肤化石碎片是目前已发现的最古老的动物皮肤化石,比此前的发现至少早1.3亿年。

  华南理工大学材料科学与工程学院褚衍辉研究团队通过多尺度结构设计,成功制备了兼具超强力学强度和高隔热性的高熵多孔硼化物陶瓷材料。研究团队制备出的这种高熵多孔硼化物陶瓷材料,其优异性能源于“三宝”,即微观尺度上构筑的超细孔、纳米尺度上强晶间界面结合,以及原子尺度上严重晶格畸变。

  记者日前从北京市农林科学院获悉,国家农业信息化工程技术研究中心、北京市农林科学院信息技术研究中心联合中国科学院西安光学精密机械研究所,成功研发出首款国产化新型视频高光谱与点云“图-谱合一”传感器。

  《自然·化学工程》创刊号1月12日发表一项研究,报道了一个能对蛋白质进行工程改造的、由AI(AI)驱动的全自动机器人。最好的策略是,不在这些重复又费力的工作上和人工智能比高低,而是腾出精力在更富创造性、思想性的工作上,展现人类独特价值。

  从中国计量科学研究院获悉,日前,该院新增的5项基于北斗的远程时间频率校准与测量能力通过国际评审,相关结果在国际计量局关键比对数据库中发布,标志着基于北斗的远程时间频率校准与测量能力首次获得国际互认。

  近日,国家知识产权局公布2023年知识产权有关数据,引发全社会广泛关注。立足新时代新征程,作为国家创新发展战略性资源和国际竞争力核心要素,知识产权的作用更加凸显,其规模、结构、质量必然的联系到高水平科技自立自强目标的实现。

  已是深冬时节,晚上10时半,清冷的月光打在地上,南京农业大学校园一片静寂。树影摇曳间,一位老者沿着小径,打着手电筒缓步前行。他叫盖钧镒,今年88岁,是中国工程院院士、南京农业大学国家大豆改良中心主任,也是目前全国唯一一名研究大豆的院士,学生们都喜欢叫他“大豆院士”。

  大众汽车则展示了首批将AI大语言模型ChatGPT融合到现有IDA语音助手功能的车型。

  根据中国信息通信研究院发布的《中国算力发展指数白皮书(2023年)》,我国智能算力增长迅速,增速为72%,在我国算力中占比达59%,成为算力迅速增加的驱动力。

  人工智能大模型的出现,为通用AI的实现打开了新的想象空间,极大的提升了人工智能处理复杂任务的能力。

  至今,长光卫星已成功实现了“百星飞天”的阶段性目标,并逐步成为全世界重要的航天遥感信息来源。

  据介绍,此项年度评选活动是科技领域历史最悠久的科普评选活动之一,每年通过高校、科研机构、媒体、科技公司等单位推荐重大科学技术进展新闻,经专家评审团初步筛选,再由两院全体院士投票选定评选结果。

  在发展重点方面,多省市将脑机接口产业纳入“十四五规划”,提出开展脑机接口基础研究,推动脑机接口成果转化和广泛应用。

  守护着这片前不久刚插完秧的稻田,中国农业科学院作物科学研究所研究员郑晓明和他的团队,正努力筛选发掘具有高产、优质、抗病等性状的可利用优异种质资源。

  今年要坚持不懈抓好“三农”工作,明白准确地提出“毫不放松抓好粮食等重要农产品稳定安全供给”“改革完善耕地占补平衡制度,提高高标准农田建设投入标准”。

  日前,浙江大学团队通过模仿北极熊毛的结构,制备出一种封装了气凝胶的超保暖人造纤维,这样一种材料同时具备保暖、轻薄和耐用的特点。这项成果相关论文发表于国际期刊《科学》杂志。